704 research outputs found

    Note sur l'"Angleton grass" Dichanthium aristatum (Poir.) Hubb

    Get PDF
    Les effets du sulfate d'ammonium sur la production de fourrage vert, de matière sèche et de foin de l'herbe d'Angleton sont étudiés. Les résultats de l'expérience permettent de conclure que: a) il augmente la production de fourrage vert et de matière sèche de cette herbe; b) l'engrais donne plus d'effet sur l'herbe coupée toutes les 4 semaines que sur l'herbe coupée toutes les 6 semaines; c) il semble que le pourcentage de matière sèche s'accroît avec l'âge de la plante; d) la production de foin, faible cependant, est plus élevée avec l'herbe d'Angleton fertilisée de 4 semaines qu'avec les autres. Pour ces raisons, l'éleveur a intérêt à utiliser cette herbe tropicale à 4 semaines ou avant. Il sera nécessaire de répéter cette expérience pour en tirer des conclusions définitive

    Enhancement of ferromagnetism by nickel doping in the 112 cobaltite EuBaCo2O5.50

    Full text link
    The study of the ordered oxygen deficient perovskite EuBaCo2-xNixO5.50 shows that the doping of cobalt sites by nickel induces a strong ferromagnetic component at low temperature in the antiferromagnetic matrix of EuBaCo2O5.50. This system exhibits indeed phase separation, i.e. consists of ferromagnetic domains embedded in the antiferromagnetic matrix of EuBaCo2O5.50. Besides, a magnetic transition is observed for the first time at 40K in the undoped and nickel doped phases, which can be attributed to the ferromagnetic ordering of the Eu3+ moments below this temperature. Moreover sharp ultra magnetization multisteps are observed below 5K, characteristic of motion of domain walls in a strong pinning system and very different from any metamagnetic transition

    Magneto-elastic coupling and unconventional magnetic ordering in triangular multiferroic AgCrS2

    Full text link
    The temperature evolution of the crystal and magnetic structures of ferroelectric sulfide AgCrS2 have been investigated by means of neutron scattering. AgCrS2 undergoes at TN = 41.6 K a first-order phase transition, from a paramagnetic rhombohedral R3m to an antiferromagnetic monoclinic structure with a polar Cm space group. In addition to being ferroelectric below TN, the low temperature phase of AgCrS2 exhibits an unconventional collinear magnetic structure that can be described as double ferromagnetic stripes coupled antiferromagnetically, with the magnetic moment of Cr+3 oriented along b within the anisotropic triangular plane. The magnetic couplings stabilizing this structure are discussed using inelastic neutron scattering results. Ferroelectricity below TN in AgCrS2 can possibly be explained in terms of atomic displacements at the magneto-elastic induced structural distortion. These results contrast with the behavior of the parent frustrated antiferromagnet and spin-driven ferroelectric AgCrO2

    Comportement laitier, à Haïti, de vaches Suisse-Brune et de race Jersey

    Get PDF
    cf. fichier PDF de l'article

    The Origin of Magnetic Interactions in Ca3Co2O6

    Full text link
    We investigate the microscopic origin of the ferromagnetic and antiferromagnetic spin exchange couplings in the quasi one-dimensional cobalt compound Ca3Co2O6. In particular, we establish a local model which stabilizes a ferromagnetic alignment of the S=2 spins on the cobalt sites with trigonal prismatic symmetry, for a sufficiently strong Hund's rule coupling on the cobalt ions. The exchange is mediated through a S=0 cobalt ion at the octahedral sites of the chain structure. We present a strong coupling evaluation of the Heisenberg coupling between the S=2 Co spins on a separate chain. The chains are coupled antiferromagnetically through super-superexchange via short O-O bonds.Comment: 5 Pages, 3 Figures; added anisotropy term in eq. 9; extended discussion of phase transitio

    Improving Estimates of Gross Primary Productivity by Assimilating Solar-Induced Fluorescence Satellite Retrievals in a Terrestrial Biosphere Model Using a Process-Based SIF Model

    Get PDF
    Abstract Over the last few years, solar-induced chlorophyll fluorescence (SIF) observations from space have emerged as a promising resource for evaluating the spatio-temporal distribution of gross primary productivity (GPP) simulated by global terrestrial biosphere models. SIF can be used to improve GPP simulations by optimizing critical model parameters through statistical Bayesian data assimilation techniques. A prerequisite is the availability of a functional link between GPP and SIF in terrestrial biosphere models. Here we present the development of a mechanistic SIF observation operator in the ORCHIDEE (Organizing Carbon and Hydrology In Dynamic Ecosystems) terrestrial biosphere model. It simulates the regulation of photosystem II fluorescence quantum yield at the leaf level thanks to a novel parameterization of non-photochemical quenching as a function of temperature, photosynthetically active radiation, and normalized quantum yield of photochemistry. It emulates the radiative transfer of chlorophyll fluorescence to the top of the canopy using a parametric simplification of the SCOPE (Soil Canopy Observation Photosynthesis Energy) model. We assimilate two years of monthly OCO-2 (Orbiting Carbon Observatory-2) SIF product at 0.5° (2015?2016) to optimize ORCHIDEE photosynthesis and phenological parameters over an ensemble of grid points for all plant functional types. The impact on the simulated GPP is considerable with a large decrease of the global scale budget by 28 GtC/year over the period 1990?2009. The optimized GPP budget (134/136 GtC/year over 1990?2009/2001?2009) remarkably agrees with independent GPP estimates, FLUXSAT (137 GtC/year over 2001?2009) in particular and FLUXCOM (121 GtC/year over 1990?2009). Our results also suggest a biome dependency of the SIF-GPP relationship that needs to be improved for some plant functional types.Peer reviewe

    Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 1: Simulating historical global burned area and fire regimes

    Get PDF
    Journal Article© 2014 Author(s). Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE into the global vegetation model ORCHIDEE, which was then used to simulate burned area over the 20th century. Special attention was paid to the evaluation of other fire regime indicators such as seasonality, fire size and fire length, next to burned area. For 2001-2006, the simulated global spatial extent of fire agrees well with that given by satellite-derived burned area data sets (L3JRC, GLOBCARBON, GFED3.1), and 76-92% of the global burned area is simulated as collocated between the model and observation, depending on which data set is used for comparison. The simulated global mean annual burned area is 346 Mha yrg'1, which falls within the range of 287-384 Mha yrg'1 as given by the three observation data sets; and is close to the 344 Mha yrg'1 by the GFED3.1 data when crop fires are excluded. The simulated long-term trend and variation of burned area agree best with the observation data in regions where fire is mainly driven by climate variation, such as boreal Russia (1930-2009), along with Canada and US Alaska (1950-2009). At the global scale, the simulated decadal fire variation over the 20th century is only in moderate agreement with the historical reconstruction, possibly because of the uncertainties of past estimates, and because land-use change fires and fire suppression are not explicitly included in the model. Over the globe, the size of large fires (the 95th quantile fire size) is underestimated by the model for the regions of high fire frequency, compared with fire patch data as reconstructed from MODIS 500 m burned area data. Two case studies of fire size distribution in Canada and US Alaska, and southern Africa indicate that both number and size of large fires are underestimated, which could be related with short fire patch length and low daily fire size. Future efforts should be directed towards building consistent spatial observation data sets for key parameters of the model in order to constrain the model error at each key step of the fire modelling
    corecore